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We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic
crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of
the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate ap-
proximations ranging from the quasiharmonic approximation �QHA� to the vibrational self-consistent field
�VSCF� method and the exact solution are described. A thorough analysis of the approximations is presented
for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the
potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum
nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that
correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly
anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a
nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary
minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting
modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it
converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles
H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the
QHA proves to be insufficient to reproduce this behavior.
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I. INTRODUCTION

Structural properties of solids such as interatomic dis-
tances, bond angles, and equilibrium lattice parameters are
customarily calculated by assuming that atomic nuclei �or
ionic cores� behave as classical particles. Within this frame-
work, the electronic problem is solved for a fixed configura-
tion of clamped nuclei. The resulting ground-state electronic
density allows for the computation of the forces acting on the
nuclei through the Hellman-Feynman theorem. These forces
are then used to determine the equilibrium configuration.
While this is justified for a large variety of systems of inter-
est, the assumption of classical nuclei becomes questionable
whenever light atoms such as hydrogen are involved. More-
over, this approximation cannot address isotope effects; the
ground-state electronic energy does not depend on the
nuclear masses but only on the atomic numbers. A widely
used approach to introduce the quantum nature of the nuclei
is the quasiharmonic approximation �QHA�.1–3 In this ap-
proximation, the nuclear ground-state energy is supple-
mented with the zero-point energy �ZPE� corresponding to
harmonic nuclear vibrations. This is based on a second-order
Taylor expansion of the potential-energy surface �PES� in
terms of the atomic coordinates around the equilibrium con-
figuration of the nuclei. The resulting dynamical matrix,
given by the second derivatives of the potential with respect
to the nuclear coordinates, can be diagonalized thus leading
to a set of orthogonal eigenvectors or normal modes �l, to-
gether with the corresponding set of frequencies �l.

4

To simulate an infinite crystal, it is customary to apply
periodic boundary conditions �PBCs� on the unit cell.4

Therefore, a crystal described by a basis of N atoms in the
unit cell is characterized by 3N vibrational bands �l�k�,
where k is a wave vector in the phonon Brillouin zone �BZ�.
Within this framework, the QHA energy at zero temperature,
EQHA, is defined as

EQHA�V� = Ecl�V� +
�

2 �
l=1

3N �
BZ

g�k��l�k,V�dk , �1�

where V is the volume of the system, g�k� is the density of
states, and the integral extends to the Brillouin zone. The first
term in the right-hand side �RHS� is the ground-state energy
for the equilibrium configuration at volume V. The second
term includes the quantum nature of the nuclei through the
harmonic ZPE, which also depends on V in a way that is
characteristic of the type of bonding. For covalent bonding it
increases upon compression, while for hydrogen bonding
there is a competition between increasing and decreasing fre-
quencies. The combination of ground-state and zero-point
energies leads to a modified EQHA vs V curve, in contrast to
Ecl vs V, with a minimum located at a volume corrected by
quantum nuclear effects. The QHA has the additional advan-
tage of lending itself naturally to the simultaneous incorpo-
ration of quantum and thermal effects.5

In the harmonic approximation the ground-state nuclear
wave function is a product of single-mode Gaussians on the
vibrational normal-mode variables �l, and the expectation
value of the nuclear coordinates coincides exactly with the
classical nuclear configuration. Apart from variations medi-
ated by volume changes, internal structural parameters �dis-
tances and angles� are unaffected in the QHA. It is then
expected that the QHA breaks down when treating highly
anharmonic systems.

Additional terms in the Taylor expansion lead to anhar-
monicity, which can come essentially in two forms. The sim-
plest one is intramode anharmonicity when the vibrational
modes remain noninteracting but the potential felt by one or
more modes cannot be approximated by a quadratic expres-
sion. This type can be included in a rather simple way. Nor-
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mal modes can be used as coordinates to map the PES be-
yond the harmonic level and the energy of each mode
obtained by solving a set of independent one-dimensional
�1D� Schrödinger equations. The second type of anharmonic-
ity is due to mode coupling. When the excursions along a
vibrational normal coordinate are large, the approximation of
small oscillations implicit in the second-order expansion
breaks down. Successive terms in the expansion involve
products of modes of the form �l

m�l�
n as well as higher-order

terms involving more than two modes. Which groups of
modes are more strongly coupled depends very much on the
specific system. In general there are no rules to find out a
priori which couplings need to be considered. A possible
strategy is to displace the system along one mode, say �1, by
an amount �, and then optimize the atomic coordinates under
the constraint �1=�. By projecting the displacements ob-
tained for the optimized configuration onto the original nor-
mal modes, one can identify and select the modes with the
largest projection.6 The main goal of this paper is to evaluate
the quality of the QHA and, where required, to provide im-
proved schemes at an affordable computational cost. To this
end, we will include anharmonicity by solving the vibra-
tional Schrödinger equation in a sequence of increasingly
accurate approximations and compare to the QHA results.

An additional issue that arises when computing the ZPE
is that the BZ integrals in Eq. �1� must be replaced with
appropriate averages over a finite set of representative points
in the BZ. This can be done in several ways. The most ac-
curate one is to compute the force constants in real space
and then use them to obtain the dynamical matrix at an arbi-
trarily dense mesh of k points in the BZ. This requires cal-
culations in large supercells or, alternatively, linear-response
calculations.7 On the other extreme, the crudest approxima-
tion is to include only the BZ-center modes of the unit cell,
while improvements can be achieved by considering BZ-
center modes of larger supercells. The advantage of the latter
is that it is easier to extend to anharmonic situations. The
second goal of this paper is to analyze how large a supercell
should be in order to reproduce the equilibrium structure
obtained with converged BZ averaging. This issue has rarely
been discussed in the literature.

In order to answer these questions we have studied two
qualitatively different models: a one-dimensional monatomic
chain and a diatomic linear chain that models a double-well
hydrogen-bonded system. In Sec. III A we show that, as usu-
ally done in the literature, systems characterized by covalent
bonding can be safely described within the quasiharmonic
approximation using a rather coarse BZ sampling. In Sec.
III B, in contrast, we show that hydrogen-bonded systems
require some level of anharmonicity in their treatment. An
anomaly in the ZPE appears when the protons center in the H
bonds upon compression. This produces an unusual behavior
of the QHA, which can lead to a secondary spurious mini-
mum in the energy-volume curve. We then study a realistic
linear F-H¯F chain where the PES has been obtained from
first-principles calculations �Sec. III C�. We study quantum
effects, in particular the isotope effect on equilibrium lattice
constant and internal geometry �H-F distance� occurring
when the nuclear masses are modified �Sec. III E�. In this
case, an inexpensive anharmonic approximation that neglects

mode coupling appears to produce an accurate lattice con-
stant. In Sec. IV we present our conclusions and elaborate on
possible extensions. In the following, we introduce the theo-
retical and computational approaches used in the present
work.

II. METHODS AND APPROXIMATIONS

In this paper we will only consider one-dimensional sys-
tems for the sake of simplicity. Although computationally
more demanding, extensions to higher dimensions are
straightforward. In the QHA, the energy for a one-
dimensional system containing N particles is

EQHA�a� = Ecl�a� +
�

2 �
i=1

N−1

�i�a� , �2�

where a is the lattice constant, which plays the role of the
volume, and Ecl�a� is the ground-state electronic energy in
the approximation of classical nuclei �classical energy�. The
vibrational frequencies �i�a� are obtained by assuming
PBCs, i.e., we consider a cyclic chain. The sum runs up to
N−1 because the vibrational mode corresponding to the rigid
translation of the whole chain has zero frequency.

In the harmonic approximation there is no need to con-
sider explicitly the N-atom chain. The same result can be
obtained by studying monatomic or diatomic cells subjected
to PBC. This equivalence is explained thoroughly in most
solid-state books.4 Here we just quote the main result, i.e.,
the dispersion relations that express the frequency as a func-
tion of wave number k in the one-dimensional phonon Bril-
louin zone. For a monatomic chain the dispersion relation is

��k,a� = 2�V��a�
m

�sin� ka

2
�� �3�

where m is the mass of the particles, k=�n / �N−1�a, and n
=0,1 , . . . ,N−1. The quantity V��a� is the second derivative
�curvature� of the interaction potential V evaluated at the
equilibrium configuration and depends on the lattice constant
a. The frequencies obtained in this way correspond exactly
with those of an N-atom cyclic chain. In the limit of N→�,
the QHA energy for a monatomic chain is

EQHA�a� = Ecl�a� +
�

2
�

BZ
g�k���k,a�dk . �4�

The case of a diatomic linear chain is analogous, with the
difference that there are two dispersion relations, represent-
ing the acoustic and optical branches. The expressions are
still analytic but slightly more complicated.4

For a hydrogen-bonded diatomic chain such as F-H¯F
the harmonic approximation can only be carried out at one of
the two equivalent global minima. If the barrier is so high
that tunneling is unlikely, then this is a reasonable approxi-
mation. However, if tunneling is important, anharmonic ef-
fects start to play a significant role and the QHA breaks
down. By symmetry, one could also choose a reference con-
figuration at the top of the inversion barrier, i.e., with the H
atoms centered between F atoms. This configuration is a sta-
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tionary point of the PES, but the QHA breaks down because
a whole portion of the optical phonon branch is unstable
around zone center.

The calculated normal modes can now be used to map the
true PES beyond the harmonic approximation. In general,
this is a complicated mutidimensional fitting problem that
requires specific techniques such as the product
representation.8 A much simpler alternative is to keep con-
sidering the normal coordinates as noninteracting but anhar-
monic. This corresponds to pure intramode anharmonicity.
The full-dimensional vibrational problem is then reduced to
mapping the one-dimensional potential for every normal co-
ordinate keeping the other normal coordinates at their clas-
sical value, i.e., zero. Then, the 1D Schrödinger equation is
solved for each one of these potentials and their ground-state
energies are added up. We call this the anharmonic approxi-
mation �ANHA�.

At the other end of the theoretical spectrum, the problem
of interacting phonons can be tackled exactly by solving the
�N−1�-dimensional Schrödinger equation. This task can be
accomplished with little effort for 3 degrees of freedom but
finds a hard wall at six. This means that, in the one-
dimensional case, one can routinely compute the exact solu-
tion for a four-atom supercell but cannot go beyond seven-
atom chains if a significant fraction of the eigenvalue
spectrum is required. Stochastic methods such as diffusion
Monte Carlo can, however, be used to compute the low-
energy region of the spectrum, as it has been done for vibra-
tions in molecular systems.9

Here we have chosen the strategy of solving the vibra-
tional Schrödinger equation using a discrete variable repre-
sentation. We used Lagrange grids based on a combination of
Cartesian and Hermite orthogonal polynomials10,11 for
double-well and single-well potentials, respectively. When
solving the Schrödinger equation exactly, a maximum of 3
vibrational degrees of freedom was considered. This implies
that the largest monatomic linear chain we studied was made
of four unit cells, while the largest diatomic chain contained
two unit cells.

We have also studied a class of approximations to the
full-dimensional solution inspired by the vibrational self-
consistent field �VSCF� method,12 which is frequently used
to compute vibrational excitation spectra of large
molecules.13 In the VSCF method the normal coordinates are
taken as completely uncorrelated and the total wave function
is written as a product of single-mode wave functions,

���1, . . . ,�N−1� = 	
i=1

N−1

�i��i� �5�

in the same spirit of the Hartree approximation to the prob-
lem of interacting electrons. Contrary to the harmonic and
anharmonic approximations, each mode now feels the pres-
ence of the other modes but in a mean-field way. The VSCF
equations are


−
�2

2M

d2

d�i
2 + Vi��i���i��i� = �i�i��i� , �6�

where

Vi��i� =� ¯� V��1, . . . ,�N−1� 	
j=1,j�i

N−1

�� j�� j��2d� j �7�

are the mean-field potentials for each mode. For a 1D system
the energy in the VSCF method is given by

EVSCF = �
i=1

N−1

�i − �N − 2�� Vi�����i����2d� , �8�

where the second term corrects for double counting in the
sum of eigenvalues. Notice that the integral in this term
should be independent of i, within numerical accuracy.

The determination of the mean-field potential requires the
computation of �N−2�-dimensional integrals, which rapidly
becomes an expensive operation. Therefore, it is desirable to
find either simpler approximations or some way of evaluat-
ing these integrals at a reduced computational cost. The
ANHA mentioned above removes this limitation by replac-
ing the single-mode densities �� j�� j��2 in Eq. �7� with delta
functions centered at � j =0. With this, the ANHA can be car-
ried onto much larger systems.

The quality of the VSCF results depends on the choice of
coordinates. If the system is only weakly anharmonic, then
the classical normal modes are a very reasonable choice.
This is not necessarily the case when anharmonicity becomes
important. The question arises on whether it is still possible
to find a set of orthogonal coordinates that are only weakly
correlated, or whether correlation is intrinsic to the problem
and cannot be significantly reduced by a clever choice of
coordinates. Within the VSCF context, finding the optimally
decorrelated coordinates is equivalent to requiring that these
minimize EVSCF. The optimal coordinates �i� can be ob-
tained by solving the VSCF problem for a linear combination
of normal modes �i�=� jZij� j and minimizing EVSCF with re-
spect to the coefficients Zij of the rotation matrix, subjected
to orthonormality constraints.14 This task can be accom-
plished by constrained multidimensional optimization
algorithms.15 Nevertheless, there is no clear evidence of a
general method for obtaining the optimal set of coordinates.
In this work we analyze the quality of the VSCF approxima-
tion with respect to the choice of vibrational coordinates for
the ab initio hydrogen-bonded linear chain.

III. RESULTS

A. Model monatomic chain

We first considered a periodic monatomic chain where the
atoms interact via a Morse potential of the form

V�x� = D�1 − e−b�x−a0��2, �9�

where parameter D represents the binding energy of a dimer,
a0 is the location of the minimum of the potential, which
corresponds to the classical lattice constant, and b is a pa-
rameter that determines the curvature of the potential
through the relation V��a0�=2Db2. The Morse potential is
intrinsically anharmonic and allows us to study the effect of
quantization of the vibrations on the lattice constant. For the
various approximations described in Sec. II we calculated the
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quantum-corrected energy as a function of the lattice param-
eter a and then determined the minimum of the E vs a curve.

In the solution of Schrödinger equation, the extent of
quantum nuclear effects can be measured by the product 	
=mD, where m is the mass of the particles and D is the
energy scale of the potential. Small values of 	 lead to im-
portant quantum effects, becoming less relevant as 	 in-
creases and eventually converging toward the classical re-
sults for 	→�. Therefore, we report our results in terms of
this quantity. In this work we have used a0=1.3983 bohr and
b=2.9864 bohr−1.

We first analyzed the effect of Brillouin-zone sampling on
the equilibrium lattice constant. For the QHA this can be
done for an arbitrarily large number N of k points in the BZ,
which is equivalent to considering a supercell containing an
equal number N of unit cells. In Fig. 1 we show the conver-
gence pattern of the QHA lattice constant as a function of 	
for increasing values of N.

It is obvious that quantum effects are more important for
smaller masses and for weaker interaction potentials. For H
atoms and D=2 eV �	=135 a.u.� we are in the region to the
left of Fig. 1, where the quantum-corrected lattice constant is
about 4% larger than the classical value �horizontal line�. It
can be seen that, for this type of potential, ten cells are al-
ready sufficient to reproduce the infinite crystal lattice con-
stant to high accuracy. However, four cells already produced
excellent results and two cells underestimated a in less than
1%.

In order to illustrate the origin of the lattice expansion, we
show in Fig. 2 the various energy curves for a four-atom
supercell as a function of the lattice parameter for 	
=304.97 a.u. The classical energy curve Ecl�a� �black solid
line� exhibits a minimum at the equilibrium lattice constant,
where the one-dimensional pressure P=−dEcl�a� /da van-
ishes. The ZPE �red dotted-dashed line� depends on the lat-
tice constant through the curvature of the potential. Upon

compression �reducing a�, the chain becomes stiffer, all fre-
quencies increase, and so does the ZPE. Therefore, the QHA
energy given by the sum of the two terms in Eq. �4�, and
represented by the blue dashed curve, exhibits a minimum at
an expanded lattice constant. This effect is similar to thermal
expansion, but the origin is purely quantum mechanical. It
can also be ascribed to a zero-point pressure originated in the
dependence of the ZPE on the lattice constant.

To evaluate the quality of the QHA we calculated the
equilibrium lattice constant in the ANHA and VSCF approxi-
mations and exactly for a four-atom supercell. The differ-
ences between these results and the QHA lattice parameter

a are reported in Fig. 3. It can be seen that these differences
are 1 order of magnitude smaller than those arising from a
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FIG. 1. �Color online� QHA lattice constant as a function of 	,
for increasing number of atoms in the supercell: N=2 �black thin
solid line�, N=3 �red short-dashed line�, N=4 �green long-dashed
line�, N=10 �blue dotted-dashed line�, and N=2000 �orange thick
solid-light gray line�. The dashed horizontal line represents the clas-
sical value.
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FIG. 2. �Color online� Contribution of the harmonic ZPE as a
function the lattice parameter for a four-atom supercell and 	
=304.97 a.u. Since the ZPE increases as a decreases �red dotted-
dashed line�, the QHA lattice parameter �vertical dashed line� cor-
responding to the minimum of the QHA energy curve �blue dashed
line� is expanded.
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FIG. 3. �Color online� Difference in equilibrium lattice constant
with respect to the QHA value, as a function 	 in a four-atom
supercell. The black solid curve is for the ANHA, the red �dotted-
dashed� line is for the VSCF, and the blue �long-dashed� line is for
the exact calculation.
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poor sampling of the BZ. These observations justify the ap-
proach commonly used to determine the quantum-corrected
lattice constant of solids, i.e., that of computing the harmonic
ZPE for a coarse BZ sampling, preferably only the � point,
adding it to the electronic ground-state energy corresponding
to the equilibrium configuration and obtaining the lattice
constant as the minimum of the sum. As we shall see now,
however, this procedure is not necessarily useful for very
anharmonic systems such as hydrogen-bonded crystals.

B. Model hydrogen-bonded chain

As an extension to highly anharmonic systems, we con-
sidered a model for a hydrogen-bonded diatomic chain
where the light atoms are generally hydrogen and the heavy
atoms can be oxygen or fluorine. For the sake of simplicity
and to be consistent with Sec. III C, we call them H and F,
respectively. For the F-H potential we retain a Morse type of
interaction �Eq. �9��. For sufficiently large F-F distances the
H atoms feel attracted to one or the other F atom rather than
being shared between them. Therefore, the H atoms in the
chain are subjected to a double-well potential. This potential
has an important property for what concerns isotope effects:
the barrier between the two wells becomes lower when the
two neighboring F atoms approach each other. This is an
essential ingredient, which allows for an easier migration of
the protons upon compression. The F displacements ��i� are
measured from the given lattice parameter. On the other
hand, the H displacements �ui� are measured from the mid-
point between the equilibrium positions of the F atoms. Dis-
placements �i and ui are continuous variables associated to
discrete lattice sites i. With this, the double Morse contribu-
tion to the PES is

EF-H = �
i=1

N

D�1 − e−b�a/2+ui−�i−re��2

+ �
i=1

N−1

D�1 − e−b�a/2−ui+�i+1−re��2

+ D�1 − e−b�a/2+uN−�1−re��2, �10�

where N is the number of sites and a is the lattice parameter.
The potential parameters are the well depth D and the posi-
tion of the minima re measured from the F atoms. The effects
of PBCs are included in the last term on the RHS.

When the H atom sits off center it forms a neutral unit
with the F atom and another H atom on the opposite side of
the F is not welcome due to electronic closed-shell repulsion
effects. A similar effect occurs in ice, where oxygens make
two strong covalent bonds with H atoms to form the water
molecules and two weaker hydrogen bonds with neighboring
molecules. This, however, is not taken into account by the
Morse potential. To introduce this feature, usually known as
Pauling’s “ice rules,” it is necessary to include an interaction
between the H atoms that discourages them from approach-
ing the same F atom. There are several possible ways of
doing this. A popular choice is to include a harmonic inter-
action between H atoms. The H-H contribution to the PES is

EH-H = �
i=1

N−1

kH-H�ui+1 − ui�2 + kH-H�u1 − uN�2, �11�

where the last term takes care of PBC. This potential encour-
ages adjacent H atoms to move the same amount in the same
direction, thus promoting the ice rules. The larger the con-
stant kH-H, the more effectively these are respected. A similar
term is included for the F atoms,

EF-F = �
i=1

N−1

kF-F��i+1 − �i�2 + kF-F��1 − �N�2 �12�

with the corresponding PBC. This potential favors the F at-
oms to move in the same direction, so that two F atoms
cannot approach the same H at once. This model has been
taken from a work by Yanovitskii et al.,16 who studied the
phase diagram in the self-consistent harmonic approximation
for a O-H¯O linear chain. The only difference with respect
to Yanovitskii’s model is the value of the harmonic constant
kH-H �0.064 13 instead of 0.014 13 a.u.�. This modification
was necessary because the original value did not enforce the
ice rules strongly enough, thus leading to a potential with
quite unrealistic features such as unstable acoustic phonon
branches, as shown in a preliminary version of this work.5

This model assumes that the H-H and the F-F interactions
are independent of the lattice parameter a. A mild depen-
dence on the lattice constant enters through the H-F interac-
tion, but it is quite unrealistic. In order to render quantum
effects more realistic we have introduced an additional
Morse-type potential,

Ea = �
i=1

N

Dl�1 − e−bl�a−al��2. �13�

The parameters used in the present work were inspired in the
calculations presented in Sec. III C and are summarized in
Table I. With this choice of parameters, the classical lattice
constant is acl=4.368 bohr. In Fig. 4 we show a schematic
picture of the interactions involved in this model.

Figure 5 shows the equilibrium lattice parameter as a
function of the inverse number of cells. The behavior of the
QHA with the number of cells is similar to the monatomic

TABLE I. Parameters used for the mode hydrogen-bonded lin-
ear chain. All quantities are expressed in a.u.

D b re kF-F kH-H Dl bl al

0.0171 4.1276 1.7763 0.02351 0.06413 0.80848 0.3 4.4

FIG. 4. �Color online� Schematic view of the interactions in a
model for a hydrogen-bonded chain.
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chain �black circles and solid line�. Notice that here each cell
contains two atoms, so that a well-converged value of aQHA
requires at least four cells, i.e., eight atoms. However, three
cells are already quite well converged, and two cells produce
a very reasonable value. Therefore, since this is an easily
affordable size, in this paper we present results mostly ob-
tained with two cells.

Notice that now aQHA decreases with increasing N. In
fact, at variance with the covalently bonded chain, the QHA-
converged value is 0.025 bohr smaller than the classical
value. This is a characteristic feature of H-bonded systems,
where the stretching frequency that contributes to the ZPE
initially decreases upon compression because the H bonds
weaken. This occurs until the bond becomes symmetric, and
only then the frequencies �and the ZPE� start to increase, as
will be shown in Sec. III C.

Next, the normal modes determined at the energy mini-
mum were used to compute the ZPE in the anharmonic ap-
proximation �ANHA, blue squares, and dotted-dashed line�.
The converged value of the lattice constant is essentially in-
distinguishable from aQHA. Its behavior with N, however, is
nonmonotonic. This can be explained through the fact that,
for this linear chain, there is only one vibrational coordinate
that exhibits a double-well potential. As the number of cells
is increased, the contribution of this double well to the total
energy becomes increasingly unimportant.

In order to evaluate the effect of mode coupling anharmo-
nicities, we carried out VSCF calculations by mapping the
PES along the normal modes corresponding to the minimum-
energy configuration, i.e., with all the H atoms off center
�green diamonds and solid line at the bottom�. The exact
calculation used the PES mapped along the normal modes
corresponding to the saddle-point configuration, i.e., with all

the H atoms in the center of the bonds �red triangles and
dashed line�. At variance with the VSCF, the choice of vi-
brational coordinates is irrelevant because, unlike the case of
molecular systems, the vibrational subspace in crystals does
not depend on the reference geometry.17 In the VSCF ap-
proximation we went up to a six-atom supercell �N=3�, i.e.,
a five-dimensional VSCF problem. The good agreement of
the VSCF with respect to exact results for N=2, together
with the trend with N exhibited by the VSCF, suggests that a
large fraction of the quantum effect is already captured in the
two-cell calculation. Nevertheless, this statement must be
taken with caution. Calculations on larger supercells are
needed to verify this especially in view of the unusual be-
havior of the anharmonic approximation ANHA.

Another conclusion is that the QHA underestimates the
lattice contraction due to quantum effects remaining at about
half the required value. The next level of difficulty and com-
putational cost is the ANHA, but its nonmonotonic behavior
with system size makes it rather unsafe as a method to in-
clude anharmonicity. In particular, the seemingly good re-
sults obtained for two cells appear to be fortuitous. The
VSCF, however, appears to be quite a good and robust
method that reproduces exact results to an excellent accu-
racy. This indicates that the correlation between modes is a
relatively minor effect, so that a mean-field approximation,
where each mode feels the other modes on average, is suffi-
cient for this class of problems.

C. First-principles hydrogen-bonded chain

As a realistic application we studied an F-H hydrogen-
bonded chain by means of first-principles calculations. Ac-
tual F-H chains develop a zigzag structure.18 However, since
our purpose here is not to solve the problem of F-H crystals,
but to understand isotope effects when a realistic PES is
used, we disregard this geometrical aspect and consider
straight chains and the motion of the atoms only along the
axis of the chain. First-principles calculations have been car-
ried out using a combination of codes. For phonon calcula-
tions we used the pseudopotential plane-wave code
Quantum-ESPRESSO.19 The energy curves and lattice con-
stants were calculated with SIESTA,20 which also uses pseudo-
potentials but the wave functions are expanded in a localized
basis set of pseudoatomic orbitals. All calculations were car-
ried out within the Perdew-Burke-Ernzerhof �PBE� general-
ized gradient approximation �GGA� �Ref. 21� to density-
functional theory �DFT�.

In Fig. 6 �upper panel� we present the phonon-dispersion
relations along the direction of the chain, calculated in the
symmetric configuration with the H atoms in their centered
position, from a compressed lattice constant of 4 bohr up to
an expanded value of 5.2 bohr. For small a there is no double
well. The H atoms are stable in their centered positions and
the optical phonon branch for this reference configuration is
stable. At a�4.22 bohr the double well emerges and the H
atoms prefer an off-centered configuration. If we insist on
calculating the phonon dispersions for the centered configu-
ration, the optical branch develops an instability at zone cen-
ter. In fact, there is a whole portion of the optical branch that
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FIG. 5. �Color online� Quantum-corrected lattice constant for a
model H-bonded chain as a function of the inverse number of cells.
Contrary to covalently bonded systems, the quantum-mechanical
effect is to decrease a from its classical value �horizontal long-
dashed line on top�. The green �light gray solid� line with diamonds
represents the VSCF results, while the red �short-dashed� line with
triangles is the exact result. The blue �dotted-dashed� line with
squares is the ANHA, and the black �solid� line with circles is the
QHA.
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is unstable. The extent of the instability region increases with
increasing lattice constant to the point of making the optical
mode unstable throughout the whole Brillouin zone when the
chain is stretched to 5.2 bohr.

Further insight is obtained by calculating the phonon-
dispersion relations for the stable configuration. These are
presented in the lower panel of Fig. 6, where it can be ob-
served that the zone-center optical phonon becomes soft at
a�4.22 bohr, and after the H atoms have centered �blue
lines and open squares� its frequency starts rising again quite
steeply. An interesting observation is that the curvature of the
optical phonon branch is the opposite of the usual picture
where the frequency decreases from zone center toward zone
boundary. This is a consequence of the type of bonding and
common to hydrogen-bonded systems. In the zone-center op-

tical phonon all unit cells move in phase, with one H atom
approaching the F atom while the other moves away. At zone
boundary, consecutive unit cells move out of phase, so that
half of the F atoms are approached by two H atoms rather
than one. This is in clear violation of the ice rules, which
penalize this type of motion with an increased energy, thus
explaining why the optical mode is harder at zone boundary.

The harmonic frequencies can now be used to analyze the
behavior of the QHA as a function of the lattice constant. In
Fig. 7 �upper panel� we show the ZPE �red dotted-dashed
line�, the classical PES �black solid line�, and the quantum-
corrected PES �blue dashed line� as functions of the lattice
parameter for N=2 �four atoms�. It is interesting to analyze
the behavior of the QHA when the system is highly com-
pressed. It is apparent that the ZPE exhibits a nonanalytic
behavior �a cusp� at a�4.2 bohr, where the H atoms center
and the type of bonding changes from hydrogen bonding to
covalent. As a consequence, the QHA curve exhibits two
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FIG. 6. �Color online� First-principles phonon dispersions for a
linear F-H chain at various lattice parameters. Upper panel: H at-
oms in centered positions. Red �dashed� lines with open squares
represent acoustic branches, while black solid lines with filled
circles correspond to optical branches. Lower panel: H atoms in
their stable position. Blue �dashed� lines with open squares corre-
spond to stable centered H atoms, while black solid lines with filled
circles indicate stable off-centered H-atoms. Acoustic branches are
omitted for clarity. Values of lattice constants in bohr are indicated
in the figure.
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FIG. 7. �Color online� Upper panel: harmonic ZPE �red dotted-
dashed line� and QHA-corrected energy curve �blue dashed line�.
Lower panel: exact ZPE and quantum-corrected energy as functions
of lattice parameter. Color and line coding as in upper panel. The
classical energy curve �black solid line� is shown in both panels for
comparison. Note the large difference between QHA and exact
equilibrium lattice constant �vertical dashed lines�. Arrows indicate
the classical lattice constant.
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minima; one of which is spurious. Since this characteristic is
associated to the stretching mode, and the remaining modes
are not severely affected by compression, similar behavior is
observed for a larger number of cells. This feature represents
a physically incorrect picture and thus a clear limitation of
the QHA in the description of hydrogen-bonded systems at
high pressures.18 In fact, this nonanalytic behavior com-
pletely disappears when the problem is solved exactly �lower
panel�. Notice the substantial difference �0.07 bohr� between
the QHA and exact lattice constants �dashed vertical lines�.

Similarly to the model presented in Sec. III B, we have
examined the dependence of quantum nuclear effects on the
number of cells and for the various approximations. Results
are summarized in Table II.

For a single cell there is only one vibrational coordinate
associated to the F-H stretching, which is subjected to a
double-well potential. Since there is only one mode, both
ANHA and VSCF approximations are equivalent to the exact
solution. The lattice constant obtained in the QHA, however,
is anomalously small. By inspection it is clear that this value
corresponds to the spurious minimum mentioned above,
which for one cell appears to be lower in energy than the
correct minimum. Figure 8 shows the quantum-corrected en-
ergy as a function of lattice parameter for two cells �i.e., two
F-H units, amounting to three vibrational modes�.

At variance with a single cell, the QHA �red dotted-
dashed line� provides a better estimate of the effect. Using

the vibrational coordinates obtained in the stable configura-
tion, and already used for the QHA, we introduced intramode
anharmonicities through the ANHA �black long-dashed line�
and mode coupling anharmonicities via the VSCF approach
�green dashed line; light gray in print�. The latter is in very
good agreement with the exact result �blue solid line� espe-
cially for small and large values of the lattice parameter.

In order to assess the quality of the various approxima-
tions, we mapped the PES along the zone-center optical
mode for different values of the lattice parameter �Fig. 9�.
For small values of a the H atoms are centered and subjected
to a single-well anharmonic potential �black solid thin line in
Fig. 9�. Therefore, at high compression the QHA is a good
approximation, but closer to the decentering point the poten-
tial becomes more anharmonic, thus compromising its qual-
ity. This situation is notably improved by introducing intra-
mode anharmonicities in the approximation of noninteracting
modes �ANHA�. The VSCF approximation reproduces the
exact results to an excellent extent, thus indicating that the
effect of correlation between modes is very small. A similar
trend is observed for large values of the lattice parameter. In
this case, the barrier in the double-well potential is so high
that the overlap between the two degenerate states �left and
right� is very small. Again, the ANHA provides an improved
estimate of the energy with respect to the QHA and the
VSCF reproduces quite well the exact results, thus indicating
that correlation between modes remains negligible. We con-
clude that in the two limiting cases the ANHA is a rather
decent approach and the VSCF reproduces very closely the
exact results.

The situation is somewhat different at intermediate values
of the lattice parameter, where the barrier is low and the
effect of anharmonicity is larger. Here the QHA and ANHA

TABLE II. Equilibrium lattice parameters �in bohr� at various
levels of approximation.

No. cells Classical QHA ANHA VSCF Exact

1 4.560 4.195 4.381 4.381 4.381

2 4.560 4.462 4.387 4.390 4.392
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FIG. 8. �Color online� Ground-state energy as a function of
lattice parameter for two unit cells at various levels of approxima-
tion. The blue �solid� line is for the exact calculation, the green
�dashed light gray� line is for the VSCF, the black �long-dashed�
line is for the ANHA, and the red �dotted-dashed� line is for the
QHA.
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FIG. 9. �Color online� First-principles PES along the zone-
center optical mode for different values of the lattice parameter. The
thin black curve represents the most compressed situation at a
=4.157 bohr. The red curve �dashed� corresponds to a
=4.346 bohr, the green �long-dashed light gray� curve to a
=4.535 bohr �close to the equilibrium value�, the blue �dotted-
dashed� curve to a=4.724 bohr, and the magenta �thick solid, dark
gray� curve to an expanded lattice constant of a=4.913 bohr. En-
ergies are reported for a supercell containing two unit cells.
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are not very satisfactory and have to be improved by intro-
ducing mode-coupling anharmonicities at the mean-field
level, as in the VSCF scheme. It is also in this region where
correlations become more important.

Although the energy curves are shifted, the position of the
minimum estimated by the ANHA is very good. According
to the results presented in Sec. III B, for the model hydrogen-
bonded chain, we believe that this may be a fortuitous coin-
cidence for this particular system size. The QHA, however, is
evidently not sufficiently accurate.

D. Choice of vibrational coordinates in the VSCF

The quality of the VSCF approximation depends on the
choice of vibrational coordinates. The more uncorrelated
they are, the better the approximation. Normal modes are a
good starting point because in the harmonic limit they are
completely uncorrelated. However, as the amplitude of the
displacements along some soft modes increases �due to quan-
tum delocalization�, the normal modes begin to couple. We
now analyze the question of which vibrational coordinates
are optimal for the VSCF approximation in the case of the
four-atom cell. The three modes are the zone-center optical
phonon, which exhibits a double well, and the zone-
boundary acoustic and optical phonons, which are practically
harmonic. In principle, any linear combination of these three
modes is possible. Nevertheless, since the modes at different
k vectors do not mix, we fix the double-well mode and op-
timize the choice of modes in the two-dimensional zone-
boundary subspace.22

We studied the quality of the VSCF for two different
choices: the normal modes calculated at the minimum of the
PES and those calculated at the saddle-point configuration,
with the H atoms centered. The VSCF energies are reported
in Fig. 10 together with the exact energy. According to Fig.
9, the two minima in the double well get closer and eventu-
ally merge as the lattice parameter is reduced. Therefore, for

values of a, where the double well has disappeared, there is
no saddle point and the normal modes at the minimum are an
excellent choice for the VSCF. Similarly, at large a the bar-
rier separating the two minima is high, and again the wave
function is quite localized around the two minima.

Therefore, the vibrational coordinates calculated at the
minimum of the PES are generally better than the saddle-
point modes for solving the VSCF problem. At intermediate
values of a none of the two choices is clearly superior to the
other. We have tried to optimize the choice of modes within
this subspace by minimizing the ground-state VSCF energy,
but the energy gain was always of the same order of magni-
tude of the difference between minimum and saddle-point
modes. Therefore, this appears to be the limit of the VSCF.
Any further improvement requires the introduction of corre-
lation between modes. The present situation is reminiscent of
static correlation cases often encountered in electronic struc-
ture calculations, where a single Slater determinant �an un-
correlated electronic configuration� is insufficient to repre-
sent the ground state. These require a multideterminantal
wave function as in multireference methods such as com-
plete active space self-consistent field �CASSCF�. Here, a
linear combination of two Hartree products, each one corre-
sponding to one of the two equivalent minima, constitutes an
improved wave function that correctly respects the symmetry
of the problem. It is well known that static correlation cannot
be recovered by perturbative methods based on a single
reference.23 This is also a problem for truncated configura-
tion interaction �CI� expansions, while full CI would require
a large basis set. This is why, in the field of molecular spec-
troscopy, various groups have developed multiconfiguration
methods such as multi-component time-dependent Hartree
�MCTDH�.24

E. Isotope effects

Figure 11 shows the effect of modifying the nuclear
masses on the lattice parameter for the case of two F-H cells.
In order to evaluate isotope effects, both the H and F masses
were multiplied by a scale factor s, so that the mode eigen-
vectors, and thus the vibrational coordinates, were not modi-
fied. We have then solved the three-dimensional Schrödinger
equation in the vibrational space for various lattice constants
and obtained the quantum corrected energy curves for the
true H and F masses �red short-dashed line� when these
masses are multiplied by 2 �violet dotted line�, 5 �green long-
dashed line�, and 10 �blue dotted-dashed line�. For compari-
son we also show the classical energy curve, corresponding
to the limit of infinite masses. As expected, the energy in-
creases with decreasing mass, while the lattice constant de-
creases, as illustrated in the inset. This is the essence of the
geometric or Ubbelohde effect in H-bonded systems.25

Lighter particles are more delocalized and exhibit a larger
probability in the region of the barrier. According to Fig. 9,
this favors more compressed bonds, thus translating into an
effective attraction between the two neighboring F atoms �or
oxygens in the more common O-H¯O hydrogen bonds�.
This attraction is reflected in an enhanced cohesion, and thus
in a smaller lattice constant,26 which is a common feature of
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FIG. 10. �Color online� Comparison of the VSCF calculations
for two different choices of vibrational coordinates. The red
�dashed� line is for the saddle-point modes, while the black �dotted-
dashed� line is for the modes calculated at the classical equilibrium
configuration. The blue solid line represents the exact energy.
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a large family of H-bonded crystals.27 To illustrate this con-
cept of enhanced delocalization, we show in Fig. 12 a two-
dimensional cut of the wave function for the true masses and
those multiplied by 5 for a lattice constant a=4.44 bohr.

We can now use these wave functions to calculate the
quantum expectation value of the F-H distance as a function
of the mass of the particles. This is a very important quantity
because it is what obtained in neutron and x-ray diffraction
experiments. This distance is usually quite different from that
obtained classically for the same lattice parameter, which
corresponds to the minimum of the double-well PES. In fact,
this is probably the source of many inconsistencies between
experimental structures and those determined via first-
principles calculations.26 In Table III we report the exact F-H
distance as a function of the mass-scaling factor for a lattice
constant of 4.44 bohr. As expected, the F-H distance de-
creases when the masses become heavier. The classical F-H
distance increases by a substantial 10% when the true H and
F masses are used. In contrast, at fixed lattice constant the

QHA values are insensitive to s. This is because quantum
and classical harmonic oscillators have the same equilibrium
position, and thus the quantum harmonic approximation does
not modify the internal geometry. More generally, the F-H
distance in the QHA corresponds to the classical value ob-
tained at the s-dependent equilibrium lattice constant, which
is reported in the inset of Fig. 11 �red symbols�. Therefore,
the influence of mass scaling is limited to the volume effect,
which is significantly smaller than the full quantum effect.
First, the dependence of the QHA lattice constant with s is
milder than the exact one. Second, as shown in Fig. 9, varia-
tions of this magnitude lead to small changes in the location
of the minima of the double well. As a consequence, the F-H
distance is severely underestimated in the QHA, thus pre-
cluding its use in the description of the internal geometry of
H-bonded systems.

In the present case, the isotope effect upon doubling of all
the masses, which is closely related to deuteration, does not
entail a significant change in the F-H distance. In a first
instance one could think that this is because it was calculated
at fixed lattice constant �see Table III�. In effect, this would
be consistent with theoretical calculations26 and experiments
under pressure.28 When sufficient pressure is applied to deu-
terated compounds to reproduce the lattice parameters of its
protonated analog, the internal geometries turn out to be
quite similar. Within this context, one of us has shown that
most of the isotope effect arises from a self-consistent inter-
play between wave-function localization, internal geometry,
and lattice parameters.29 Therefore, to assess the full extent
of the isotope effect, one would have to compare the internal
geometries at the corresponding equilibrium lattice con-
stants. In the present case we obtained F-H distances of 2.12
and 2.10 bohr, respectively. Interestingly, the isotope effect
remains as small as before. This is not inconsistent with ex-
perimental data, though. In fact, the magnitude of the isotope
effect on interatomic distances in hydrogen-bonded systems
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FIG. 12. �Color online� Two-dimensional cut of the ground-state wave function in the subspace of the two optical modes �2 and �3. The
upper panel is for the true masses and the lower panel is for particles five times heavier. Notice the enhanced localization of the latter.
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FIG. 11. �Color online� Energy vs lattice constant for various
mass-scaling factors. The black �solid� line is the classical result,
blue �dotted-dashed� line is for s=10, green �long-dashed light
gray� line for s=5, violet �dotted� line for s=2, and red �short-
dashed dark gray� line for s=1. Vertical lines indicate the equilib-
rium lattice constants, which are then reported in the inset as a
function of 1 /s. The H-F chain PES has been calculated at the
DFT-PBE level, using the SIESTA code. Actual H-F chains assume a
zigzag form, but here we considered linear chains.

TABLE III. Equilibrium F-H distance �in bohr� as a function of
the mass-scaling factor s for a lattice constant of 4.44 bohr.

s 1 2 5 10 �

dF-H 2.08 2.06 2.02 1.99 1.85
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ranges from almost insignificant values for some systems to
large differences as in KH2PO4, where the O-O distance of
2.45 Å rises to 2.52 Å in its deuterated analog KD2PO4.28

This depends on several factors, mainly the size of the cou-
pling between internal coordinates and strain and the shape
of the double well �barrier height and distance between
minima� in the region around the equilibrium lattice con-
stant.

IV. CONCLUSIONS AND OUTLOOK

We have analyzed the influence of quantum nuclear ef-
fects on the structural properties of solids. To this end we
have implemented a simple methodology of mapping the
multidimensional PES in the space of normal modes and
then solving the resulting vibrational Schrödinger equation.
This has been done exactly when possible and also using a
number of computationally tractable approximations that
range from the vibrational self-consistent field �VSCF�
method and its variants down to the quasiharmonic approxi-
mation �QHA�.

We have studied the behavior of energies and lattice con-
stants in an anharmonic monatomic chain as a function of the
size of the supercell and showed that results for four cells are
probably already quite close to convergence. Here, the QHA
is an excellent approximation unless the masses become ex-
ceedingly small, thus justifying the customary approach fol-
lowed in solid-state physics. We have then analyzed the be-
havior of a model hydrogen-bonded chain and observed that
the coupling between modes can be important. Finally, we
considered a realistic H-bonded chain where the PES was
determined from first-principles calculations. Here we ob-
tained the quantum-corrected lattice constant and internal
structural parameters �distances� and showed how isotope ef-
fects arise in these systems. We have also analyzed the vari-
ous approximations and showed that the QHA is insufficient,
while the independent-mode anharmonic approximation
�ANHA� appears to introduce an important improvement at
the energetic and structural levels. Nevertheless, results ob-
tained for the model hydrogen-bonded chain suggest that this
may be accidental and due to size effects. VSCF results are
very close to exact ones, thus suggesting that correlation be-
tween modes is a minor effect. Optimizing the vibrational
coordinates in the VSCF method does not constitute a sig-
nificant advantage; further improvement should arise from
correlated methods such as vibrational CI or MCTDH. In
any case, the VSCF approach using the modes calculated at
the classical equilibrium geometry appears to be a very good
approximation.

Although technically the extension to higher dimension-
alities is straightforward, there are some features that are not
present in one-dimensional systems. For example, the tunnel-
ing mode can be strongly coupled to other modes,6 so that,
for large amplitude of motion, correlation between them may
become important. In this case we enter the realm of multi-
dimensional tunneling where, if we insist on describing the
proton motion in terms of a single effective tunneling coor-
dinate, the latter tends to be curvilinear. Therefore, it is quite
likely to have to adopt schemes that combine the exact solu-

tion for one or a few subspaces of strongly coupled modes,
with a VSCF representation or a lower-level scheme such as
the QHA for the remaining modes.30 It remains the problem
of identifying what are those subspaces though.

There are many aspects of this approach that can be im-
proved especially for what concerns simplified methods that
can be used for larger systems and higher dimensionality.
Within the VSCF scheme, the limiting factor is the mapping
of the PES and the multidimensional integration. The latter
can be efficiently dealt with by factorizing the PES into a
sum of products of modes.8 This allows for the computation
of VSCF potentials as products of inexpensive one-
dimensional integrals. The problem of fitting the PES re-
mains open, although there are general strategies for PES
fitting based on interpolation methods31 or using principles
of multivariate analysis such as the high-dimensional model
representation of Rabitz and Aliş.32 An improvement to the
ANHA that approximately recovers the interaction between
modes at the mean-field level consists of using the quantum
expectation value of the geometry as a reference rather than
the classical one. This can also be seen as a simplification of
the VSCF approximation where the vibrational wave func-
tions in the integrals are replaced by completely localized
delta functions. This is a good approximation unless one or
more approximated wave functions exhibit two peaks corre-
sponding to a double-well potential.

Another subtle issue in hydrogen-bonded systems is that,
although DFT-GGA approaches reproduce structural proper-
ties quite well, proton transfer barriers appear to be exceed-
ingly small in some cases even disappearing altogether.33

Therefore, other electronic structure methods such as hybrid
Hartree-Fock DFT �Ref. 34� or correlated quantum chemical
methods have to be explored.35

A straightforward extension of this methodology is the
calculation of vibrational excitations. Once the PES is
known, excited states can be easily calculated and used to
compute thermodynamic quantities beyond the quasihar-
monic approximation. General VSCF algorithms useful to
tackle mild anharmonicities in molecular systems have been
implemented many years ago13 and more recently in con-
junction with an ab initio description of the PES.36 In fact, a
VSCF option is available in some electronic structure codes
such as GAMESS.37 The main use of this capability is at the
spectroscopic and thermochemical rather than structural
level. An extension of this methodology to crystalline sys-
tems is straightforward and perfectly viable, although to the
best of our knowledge this has not been implemented so far.
Nevertheless, the treatment of highly anharmonic systems
such as those involving double wells remains a challenge.
We expect the present paper to be a relevant contribution in
this direction.
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